Роль аминокислот в организме человека.

Аминокислоты — питательные вещества, из которых состоят все белки организма. Также аминокислоты в спорте используются организмом для развития и функционирования органов при нагрузках.

Что такое аминокислоты?

Об этом я рассказывала в своей статье про белки. Там также я вкратце дала понятие, что же такое незаменимые аминокислоты. В этой статье я более подробно остановлюсь на этом вопросе. Потому что эти знания необходимы человеку, который выбрал для себя стиль жизни с правильным питанием.

Аминокислоты- это химические частицы, составляющие белка, они же образуют структуру тканей человеческого организма.

Что такое аминокислоты?

Итак, незаменимые аминокислоты- это необходимые организму аминокислоты, которые самим организмом не синтезируются (не вырабатываются), и в этой связи должны ежедневно поступать в достаточном количестве извне, а значит, с пищей.

Зная перечень этих аминокислот и владея списком продуктов, где они содержатся, мы поможем нашему организму получать необходимое питание на клеточном уровне. Для восстановления, строительства и развития.

Итак, давайте перечислим 8 основных незаменимых аминокислот, необходимых взрослому человеческому организму, и плюс 2 дополнительно для детского организма до 6 лет:

Что такое аминокислоты?
  1. Аргинин (детский организм)-Arg
  2. Валин-Val
  3. Гистидин (детский организм)-His
  4. Изолейцин-Ile
  5. Лейцин-Leu
  6. Лизин-Lys
  7. Метионин-Met
  8. Треонин-Thr
  9. Триптофан-Trp
  10. Фенилаланин-Phe

Полузаменимые аминокислоты

Полузаменимыми называются аминокислоты, которые при благоприятных условиях могут синтезироваться в организме человека. Одной из самых важных из данных аминокислот является Аргинин, которая очищает печень и служит хорошим фактором, предотвращающим развитие рака. Эту кислоту часто употребляют спортсмены, поскольку она способствует росту мышечной массы и сжиганию жиров.

Аминокислота Тирозин очень важна для правильной работы щитовидной железы, правильного кроветворения, устойчивого иммунитета. А вот для снятия воспалений организму потребуется Цистин.

Аминокислоты

Основная роль аминокислот связана с тем, что из них образуются белки. Кроме того, в организме они выполняют некоторые специфические функции. Например, в щитовидной железе позвоночных из аминокислоты тирозина образуется гормон тироксин.

Разнообразие белков обеспечивается комбинациями 20 аминокислот (количество возможных вариантов –около 2 х 1018). В состав аминокислот входят карбоксильные группы – (–СООН) с кислотными свойствами и аминогруппы–(–NH2), для которых характерны щелочные свойства, поэтому они являются амфотерными соединениями. Это предопределяет их способность к взаимодействию. Связаны карбоксильные и аминогруппы с одним и тем же атомом углерода. Между собой аминокислоты отличаются боковыми цепями–радикалами, R-группами. У разных аминокислот они неодинаковы по химической структуре, электрическому заряду, растворимостью в воде. В состав радикалов многих аминокислот входят полярные группы, поэтому большинство аминокислот растворимы в воде.

Почти все аминокислоты белков принадлежат к одному типу стереоизомеров L-ряда, то есть обращают плоскость поляризованного света влево. Встречаются у микроорганизмов D-аминокислоты, которые обращают плоскость поляризованного света вправо.

Чтобы отличить двадцать аминокислот от других аминокислот, также содержащихся в организмах, но не в составе белков, их называют основными. Исходя из возможности синтеза в организмах 20 аминокислот их разделяют на заменимые и незаменимые. Заменимые аминокислоты синтезируются в организме человека и животного. Незаменимые аминокислоты синтезируются растениями, грибами, бактериями и попадают в организм с пищей.

Для чего нужны незаменимые аминокислоты?

Для чего нужны незаменимые аминокислоты и почему они обязательно должны поступать с пищей в организм спортсменов.

Валин необходим для полноценного роста. Продукты с его содержанием обязательно должны входить в рацион детей и подростков, а также спортсменов (которым нужно увеличить мышечную массу).

Гистидин участвует в процессе регенерации тканей, входит в состав гемоглобина.

Лейцин и изолейцин нужны организму, чтобы синтезировать белки, поддерживают активность иммунной системы.

Лизин — без этого вещества организм не может усваивать кальций.

Читайте также:  SlimBiotic — уникальное средство для быстрого сжигания жира

Триптофан нужен для выработки витамина B и гормонов, контролирующих чувство голода и настроение.

Фенилаланин используется организмом для выработки адреналина.

Ученые установили, что аминокислоты чрезвычайно важны для восстановления мышц во время цикла сушки или похудения, для наращивания мышечной массы.

Для роста мышц являются одной из самых важных добавок.

Цели приема аминокислот в спорте:

    1. Повышение эффективности тренировок, ускорение наращивания мышечной массы.
    2. Снижение посттренировочных болей в мышцах и быстрое восстановление.
    3. Сжигание части ненужных жиров.

Свойства аминокислот

Аминогруппа —NH2 определяет основные свой­ства аминокислот, т. к. способна присоединять к себе катион водорода по донорно-акцепторному механизму за счет наличия свободной электронной пары у атома азота.

Группа —СООН (карбоксильная группа) опреде­ляет кислотные свойства этих соединений. Следо вательно, аминокислоты — это амфотерные орга­нические соединения.

Со щелочами они реагируют как кислоты:

С сильными кислотами как основания-амины:

Кроме того, аминогруппа в аминокислоте всту­пает во взаимодействие с входящей в ее состав кар­боксильной группой, образуя внутреннюю соль:

Ионизация молекул аминокислот зависит от кислотного или щелочного характера среды:

Так как аминокислоты в водных растворах ве­дут себя как типичные амфотерные соединения, то в живых организмах они играют роль буферных веществ, поддерживающих определенную концен­трацию ионов водорода.

Аминокислоты представляют собой бесцветные кристаллические вещества, плавящиеся с разло­жением при температуре выше 200 °С. Они рас­творимы в воде и нерастворимы в эфире. В зависи­мости от радикала R— они могут быть сладкими, горькими или безвкусными.

Аминокислоты подразделяют на природные (обнаруженные в живых организмах) и синтети­ческие. Среди природных аминокислот (около 150) выделяют протеиногенные аминокислоты (около 20), которые входят в состав белков. Они представляют собой L-формы. Примерно полови­на из этих аминокислот относятся к незамени­мым, т. к. они не синтезируются в организме че­ловека. Незаменимыми являются такие кислоты, как валин, лейцин, изолейцин, фенилаланин, ли­зин, треонин, цистеин, мети­онин, гистидин, триптофан. В организм человека данные вещества поступают с пи­щей. Если их количество в пище будет недостаточ­ным, нормальное развитие и функционирование орга­низма человека нарушаются. При отдельных заболеваниях организм не в состоянии син­тезировать и некоторые другие аминокислоты. Так, при фенилкетонурии не синтезируется тирозин.

Важнейшим свойством аминокислот является способность вступать в молекулярную конденса­цию с выделением воды и образованием амидной группировки —NH—CO—, например:

Получаемые в результате такой реакции высо­комолекулярные соединения содержат большое число амидных фрагментов и поэтому получили название полиамидов.

К ним, кроме названного выше синтетического волок­на капрона, относят, напри­мер, и энант, образующийся при поликонденсации аминоэнантовой кислоты. Для получения синтетических во­локон пригодны аминокис­лоты с расположением амино- и карбоксильной групп на концах молекул.

Полиамиды α-аминокислот называются пепти­дами. В зависимости от числа остатков аминокислот различают дипептиды, трипептиды, полипепти­ды. В таких соединениях группы -NH-CO- на­зывают пептидными.

Суточная норма

Потребность в различных веществах, в том числе и в аминокислотах, у нашего организма зависит от нескольких факторов:

  • возраста;
  • пола;
  • уровня физической и психической нагрузки;
  • состояния здоровья и прочего.

Рассмотрим суточную потребность в незаменимых аминокислотах для взрослого человека, имеющего вес примерно 60 килограмм:

  • триптофана – 1 г;
  • лейцина – 5 г;
  • треонина – 2,5 г;
  • валина– 3,5 г;
  • лизина – 4 г;
  • изолейцина– 3,5 г;
  • метионина – 3 г;
  • фенилаланина– 3 г.

Для детей необходимы также гистидин и аргинин, они не способны синтезироваться у малышей, поэтому должны поступать с пищей. В дальнейшем их печень сможет создавать эти незаменимые аминокислоты из заменимых.

Незаменимые аминокислоты — какова их роль в нашем организме?

Органические вещества — основной элемент построения белков.

Наш организм строится на белке, аминокислоты — это то, из чего организм строит собственные белки. Часть аминокислот человеческий организм может синтезировать, но есть несколько необходимых аминокислот, которые можно получить только в готовом виде из продуктов питания. Такие аминокислоты называются незаменимыми. Недостаток или отсутствие незаменимых аминокислот опасно для здоровья.

Читайте также:  Влияние креатина на потенцию: положительные и отрицательные стороны

Какие аминокислоты являются незаменимыми?

Некоторые аминокислоты человек не может синтезировать из-за отсутствия соответствующего фермента. Незаменимыми для взрослого здорового человека являются 8 аминокислот:

Валин (незаменимая аминокислота):

  • участвует в обмене азота в организме,
  • необходим для метаболизма в мышцах,
  • восстанавливает поврежденные ткани,
  • является источником энергии.

Лейцин (незаменимая аминокислота):

  • защищает мышечные ткани,
  • восстанавливает кости, кожу и мышцы,
  • понижает уровень сахара в крови,
  • стимулирует синтез гормона роста,
  • является источником энергии.

Изолейцин (незаменимая аминокислота):

  • необходим для синтеза гемоглобина,
  • регулирует уровень сахара в крови,
  • восстанавливает мышечную ткань,
  • участвует в процессах энергообеспечения,
  • увеличивает выносливость.

Треонин (незаменимая аминокислота):

  • участвует в синтезе коллагена и эластина,
  • участвует в белковом и жировом обмене,
  • помогает работе печени (препятствует отложению жиров в печени),
  • стимулирует иммунитет,
  • треонин находится в сердце, центральной нервной системе и скелетной мускулатуре.

Метионин (незаменимая аминокислота):

  • участвует в переработке жиров, предотвращая их отложение в печени и в стенках артерий,
  • способствует пищеварению,
  • защищает от воздействия радиации,
  • полезна при остеопорозе и химической аллергии,
  • метионин применяется в комплексной терапии ревматоидного артрита и токсикоза беременности.

Триптофан (незаменимая аминокислота):

  • используется для синтеза серотонина (одного из важнейших нейромедиаторов),
  • улучшает сон,
  • стабилизирует настроение,
  • уменьшает аппетит,
  • увеличения выброс гормона роста,
  • снижает вредное воздействие никотина.

Лизин (незаменимая аминокислота):

  • входит в состав практически всех белков,
  • необходим для формирования костей и роста детей,
  • способствует усвоению кальция,
  • поддерживает обмен азота,
  • участвует в синтезе антител, гормонов и ферментов,
  • участвует в формировании коллагена и восстановлении тканей,
  • увеличивает мышечную силу и выносливость,
  • способствует увеличению объёма мышц (анаболик),
  • улучшает краткосрочную память,
  • повышает женское либидо,
  • предотвращает развитие атеросклероза,
  • утолщает структуру волос,
  • предотвращает развитие остеопороза,
  • улучшает эрекцию,
  • предотвращает рецидивы генитального герпеса.

Фенилаланин (незаменимая аминокислота):

  • фенилаланин в организме может превращаться в другую аминокислоту — тирозин, которая используется в синтезе допамина и норэпинефрина (двух основных нейромедиаторов),
  • влияет на настроение,
  • уменьшает боль,
  • улучшает память и способность к обучению,
  • подавляет аппетит.

Аргинин (незаменимая аминокислота):

  • замедляет рост опухолей, в том числе раковых, за счет стимуляции иммунной системы организма,
  • способствует дезинтоксикации печени,
  • содержится в семенной жидкости,
  • способствует повышению потенции,
  • содержится в соединительной ткани и в коже,
  • участвует в обмене веществ в мышечной ткани,
  • расширяет сосуды и усиливает их кровенаполнение,
  • снижает кровяное давление,
  • способствует снижению уровня холестерина в крови,
  • препятствует образованию тромбов,
  • стимулирует синтез гормона роста и ускоряет рост у детей и подростков,
  • увеличивает массу мышечной ткани и уменьшает массу жировой ткани,
  • способствует нормализации состояния соединительной ткани.

Гистидин (незаменимая аминокислота):

  • входит в состав активных центров множества ферментов,
  • способствует росту и восстановлению тканей,
  • важен для здоровья суставов,
  • содержится в гемоглобине,
  • недостаток гистидина может вызвать ослабление слуха.

Для детей незаменимыми аминокислотами также являются аргинин и гистидин.

Недостаток незаменимых аминокислот вызывает такие проблемы, как:

В каких продуктах содержатся незаменимые аминокислоты?

Получить все аминокислоты из мяса проще. Чтобы получить полный набор незаменимых аминокислот из растительных продуктов, желательно сочетать злаки, бобовые, орехи, овощи и фрукты. Эти продукты в любом случае являются необходимыми составляющими здорового рациона питания.

Для синтеза белков нам необходимы все незаменимые аминокислоты, поэтому если какой-то одной недостаточно, другие аминокислоты тоже не будут использованы. Чаще всего, этим недостающим элементом является метионин, поскольку в растительных продуктах его мало. Высокий уровень содержания метионина можно найти в семенах кунжута, бразильских орехах и злаках.

статья Роль белков, жиров и углеводов в нашем рационе.

В описании незаменимых аминокислот использованы материалы сайта

Аспарагин

Аспарагин необходим для поддержания баланса в процессах, происходящих в центральной нервной системе: препятствует как чрезмерному возбуждению, так и излишнему торможению. Он участвует в процессах синтеза аминокислот в печени.

Читайте также:  Дюбажи как часто можно делать — Лечим печень

Так как эта аминокислота повышает жизненную силу, добавку на ее основе применяют при усталости. Она играет также важную роль в процессах метаболизма. Аспартовую кислоту часто назначают при заболеваниях нервной системы. Она полезна спортсменам, а также при нарушениях функции печени. Кроме того, он стимулирует иммунитет за счет повышения продукции иммуноглобулинов и антител.

Аспартовая кислота в больших количествах содержится в белках растительного происхождения, полученных из пророщенных семян и в мясных продуктах.

Денатурация инактивирует белки

Еще одной важной особенностью белков является то, что они проявляют свою активность лишь в узких температурных рамках и в определённом диапазоне кислотности среды.

Если условия, окружающие белок, изменяются, то он может частично потерять свою структуру или полностью развернуться. Этот процесс называется денатурацией. Белки могут быть денатурированы, когда рН, температура или ионная концентрация окружающего раствора изменена. Денатурация происходит вследствие разрыва водородных, ионных, дисульфидных и других связей, стабилизирующих пространственную структуру белковых молекул. При этом может утрачиваться их четвертичная, третичная и даже вторичная структуры.

Денатурированные белки как правило биологически неактивны. Это особенно значимо в отношении ферментов: так как почти каждая химическая реакция происходит при их помощи, жизненно важно, чтобы они функционировали нормально.

До появления морозильников и холодильников единственным способом предохранения продуктов от размножения в них микроорганизмов было хранение их внутри раствора, содержащего высокую концентрацию соли или уксуса, которые денатурировали ферменты микроорганизмов и предотвращали их рост.

Большинство ферментов функционирует в очень узком диапазоне условий окружающей среды. У каждого энзима этот диапазон специфичен. Ферменты крови, которые работают при рН около 7,4, быстро денатурируют в кислой среде желудка. И наоборот, протеолитические ферменты желудка, работающие при рН=2 или менее, разбираются в основной среде крови. Аналогично у организмов, живущих вблизи океанических гидротермальных источников, есть ферменты, которые хорошо работают только в экстремальных температурах (до 100°С). Эти организмы не могут выжить в более прохладных водах, потому что их энзимы не функционируют должным образом при относительно низких температурах.

Денатурация инактивирует белки

Если нормальные показатели окружающего раствора восстанавливаются, небольшой белок, не потерявший первичной структуры, может восстановиться. Этот процесс называется ренатурацией, он происходит благодаря взаимодействию неполярных аминокислот и воды. Первоначально этот процесс был установлен для энзима рибонуклеазы, его ренатурация привела к выводу, что первичная структура определяет третичную структуру белка. Более сложные белки редко складываются вновь из-за их сложной окончательной структуры. Их денатурация носит необратимый характер.

Важно отличать денатурацию от диссоциации. Субъединицы белков с четвертичной структурой могут быть диссоциированы (разделены) без потери своей индивидуальной третичной структуры. Например, молекула гемоглобина может диссоциировать на 4 молекулы (2 α-глобина и 2 β-глобина) без денатурации свёрнутых глобиновых белков. Они легко восстанавливают свою четвертичную структуру из четырёх субъединиц.

Исследования изолейцина : применение ВСАА

Сразу же после открытия эту аминокислоту с разветвленной боковой цепью много изучали. В последнее время за рубежом прошли крупные исследования лейцина. Наряду с этим изучалось комплексное применение ВСАА. Оказалось, что лейцин и валин немного подавляли усвоение глюкозы в организме животных. При этом изолейцин нормализовал всасывание углеводов клетками. Вдобавок выяснилось, что изолейцин так же как и лейцин стимулирует выработку инсулина в организме.

В другом исследовании крысам давали добавку, включающую лейцин, цистеин, метионин, валин и большое количество изолейцина. После курсового приема грызунами этого препарата ученые провели пероральный тест (анализ крови на сахар). Оказалось, что уровень глюкозы в крови у животных понизился. Данные исследования показали, что применение изолейцина в чистом виде или в составе добавок ВСАА улучшает усвоение глюкозы мышцами.